3 research outputs found

    MAFC: Multi-Agent Fog Computing Model for Healthcare Critical Tasks Management

    Get PDF
    Producción CientíficaIn healthcare applications, numerous sensors and devices produce massive amounts of data which are the focus of critical tasks. Their management at the edge of the network can be done by Fog computing implementation. However, Fog Nodes suffer from lake of resources That could limit the time needed for final outcome/analytics. Fog Nodes could perform just a small number of tasks. A difficult decision concerns which tasks will perform locally by Fog Nodes. Each node should select such tasks carefully based on the current contextual information, for example, tasks’ priority, resource load, and resource availability. We suggest in this paper a Multi-Agent Fog Computing model for healthcare critical tasks management. The main role of the multi-agent system is mapping between three decision tables to optimize scheduling the critical tasks by assigning tasks with their priority, load in the network, and network resource availability. The first step is to decide whether a critical task can be processed locally; otherwise, the second step involves the sophisticated selection of the most suitable neighbor Fog Node to allocate it. If no Fog Node is capable of processing the task throughout the network, it is then sent to the Cloud facing the highest latency. We test the proposed scheme thoroughly, demonstrating its applicability and optimality at the edge of the network using iFogSim simulator and UTeM clinic data

    Smart healthcare system for severity prediction and critical tasks management of COVID-19 patients in IoT-fog computing environments

    Get PDF
    COVID-19 has depleted healthcare systems around the world. Extreme conditions must be defined as soon as possible so that services and treatment can be deployed and intensified. Many biomarkers are being investigated in order to track the patient's condition. Unfortunately, this may interfere with the symptoms of other diseases, making it more difficult for a specialist to diagnose or predict the severity level of the case. This research develops a Smart Healthcare System for Severity Prediction and Critical Tasks Management (SHSSP-CTM) for COVID-19 patients. On the one hand, a machine learning (ML) model is projected to predict the severity of COVID-19 disease. On the other hand, a multi-agent system is proposed to prioritize patients according to the seriousness of the COVID-19 condition and then provide complete network management from the edge to the cloud. Clinical data, including Internet of Medical Things (IoMT) sensors and Electronic Health Record (EHR) data of 78 patients from one hospital in the Wasit Governorate, Iraq, were used in this study. Different data sources are fused to generate new feature pattern. Also, data mining techniques such as normalization and feature selection are applied. Two models, specifically logistic regression (LR) and random forest (RF), are used as baseline severity predictive models. A multi-agent algorithm (MAA), consisting of a personal agent (PA) and fog node agent (FNA), is used to control the prioritization process of COVID-19 patients. The highest prediction result is achieved based on data fusion and selected features, where all examined classifiers observe a significant increase in accuracy. Furthermore, compared with state-of-the-art methods, the RF model showed a high and balanced prediction performance with 86% accuracy, 85.7% F-score, 87.2% precision, and 86% recall. In addition, as compared to the cloud, the MAA showed very significant performance where the resource usage was 66% in the proposed model and 34% in the traditional cloud, the delay was 19% in the proposed model and 81% in the cloud, and the consumed energy was 31% in proposed model and 69% in the cloud. The findings of this study will allow for the early detection of three severity cases, lowering mortality rates.Web of Science2022art. no. 501296

    Multi-Agent Systems in Fog–Cloud Computing for Critical Healthcare Task Management Model (CHTM) Used for ECG Monitoring

    No full text
    In the last decade, the developments in healthcare technologies have been increasing progressively in practice. Healthcare applications such as ECG monitoring, heartbeat analysis, and blood pressure control connect with external servers in a manner called cloud computing. The emerging cloud paradigm offers different models, such as fog computing and edge computing, to enhance the performances of healthcare applications with minimum end-to-end delay in the network. However, many research challenges exist in the fog-cloud enabled network for healthcare applications. Therefore, in this paper, a Critical Healthcare Task Management (CHTM) model is proposed and implemented using an ECG dataset. We design a resource scheduling model among fog nodes at the fog level. A multi-agent system is proposed to provide the complete management of the network from the edge to the cloud. The proposed model overcomes the limitations of providing interoperability, resource sharing, scheduling, and dynamic task allocation to manage critical tasks significantly. The simulation results show that our model, in comparison with the cloud, significantly reduces the network usage by 79%, the response time by 90%, the network delay by 65%, the energy consumption by 81%, and the instance cost by 80%
    corecore